JOINING PROCESSES

BASIC CLASS NOTES

<u>Reading Review and Class Preparation</u> This should be filled out prior to class.

Key Concepts to Be Discussed in Class:

Questions About Subject Matter for Class Session:

So What? Why? Who Cares?

- Quite often Making Something Requires Joining the Pieces Together
- Techniques other Than Mechanical Fastening are Often Used

- A Problem Correctly Stated is a Problem Half Solved
 - Charles Kettering

JOINING PROCESSES

BASIC CLASS NOTES

Outline

- Welding
 - Definition and Scientific Principles
 - Various Processes

- Brazing and Soldering
 - Focus on Comparison

- Adhesives
 - Mentioned Throughout

JOINING PROCESSES

BASIC CLASS NOTES

Definition of Welding

- Welding is a Fusion Joining Process
- In Metals
 - Both the Filler Metal and Base Metal Melt
- Weld Design Requires
 - Ensuring Melting
 - Ensuring Joining
 - Minimizing Effects

Before Welding

After Welding

Parts/Zones of a Welded Joint

- Fusion Zone
 - Metal Quickly Solidifies
- Heat Affected Zone
 - Solid Metal "Annealed" Due to Heat Transfer

JOINING PROCESSES

BASIC CLASS NOTES

Concept Question

- Consider the Following Material Facts
 - Heating a Material Reduces Strength Both Before and After Cooling
 - Materials Which Solidify Quickly are Stronger
 - During Welding the Weld Pool Must Not Oxidize
- How Does This Effect Welding?

• What Must Be Done for a Good Weld?

• What is a Good Weld?

JOINING PROCESSES

BASIC CLASS NOTES

Melting

• Sufficient Energy Must Be Provided to Melt the Required Amount of Metal

Freshmen Experience

- Two Pieces of Steel
- Flame Welded (No Filler Metal)
- Dimensions Length = 1.5" Width = 0.5" Thickness = 0.0625"

Heat and Power Sources

- Oxy-Acetylene
 - 48 kJ/L
 - Efficiency = 25%-50% or 50%-80%
- Shielded Metal Arc Welding
 - \circ 5x10⁶ 5x10⁸ W/m²
 - \circ Efficiency = 65%-85%

<u>Notice</u>

The time required to form the joint through flame welding is 10x that of arc welding

Ref: Messler R.W.: Principles of Welding; Wiley (1999)

JOINING PROCESSES

BASIC CLASS NOTES

Oxy-Fuel Welding

- Heat Supplied by Combustion of Acetylene (C_2H_2) Control of Flame
- - 0 Oxidizing
 - Neutral 0
 - Reducing 0

JOINING PROCESSES

BASIC CLASS NOTES

Typical Set Up

- Huge Voltage
- Safety

Ref: Messler R.W.: Principles of Welding; Wiley (1999)

JOINING PROCESSES

BASIC CLASS NOTES

SMAW More Details

- A Flux Coats the Electrode
 - During Welding Heat is Generated
 - Flux Evaporates
 - \circ Removes $O_2(g)$

Ref: D.Dickinson: Course Notes and NEMJet

SMAW Advantages

- Easily Implemented
- Inexpensive
- Flexible
- Compared to Flame Sources
 - Cost ?
 - Easier Protection of Weld Pool
 - Faster

JOINING PROCESSES

BASIC CLASS NOTES

GMAW or MIG

- Power Source
 - Electric Arc
 - Like SMAW
- Protection
 - Inert Gas From Feed

Ref: D.Dickinson: Course Notes and NEMJet

<u>MIG Gun</u>

- Bulkier than SMAW Stick Holder
- Requires
 - Gas Souce
 - \circ Metal Wire Feed

Ref: D.Dickinson: Course Notes and NEMJet

⁰

JOINING PROCESSES

BASIC CLASS NOTES

Robots and Automation

- MIG Welding is Automatabile Wire Feed

 - 0 Gas Flow Rate
 - Position 0
- **Difficult Manual Operation** •

Ref: D.Dickinson: Course Notes and NEMJet

JOINING PROCESSES

BASIC CLASS NOTES

GTAW

- Heat Source
 - Arc From Tungsten (W) Electrode
- Protection
 - Inert Gas from Feed
 - Alloying
 - $\circ \qquad \ \ {\rm Filler} \ {\rm Rod} \ {\rm can} \ {\rm Be} \ {\rm Used}$

Ref: D.Dickinson: Course Notes and NEMJet

<u>TIG Gun</u>

- TIG Gun
 - Complicated
- Filler Metal
 - On the Side
- Requires
 - Gas Source
 - Wire Feed
 - Tip Maintenance

Ref: D.Dickinson: Course Notes and NEMJet

JOINING PROCESSES

BASIC CLASS NOTES

Spot Welding

• The Arc is Submerged in Powder

Ref: D.Dickinson: <u>Course Notes</u> and NEMJet

Spot Welding

•

- Electric Resistance Welding
 - Electrical Contact Under Pressure
 - Localized

$$E = I^2 R t$$

JOINING PROCESSES

BASIC CLASS NOTES

Thermit Welding

- Use of Chemical Reaction
 - $\circ \qquad Al(s) + Fe_2O_3(s) \dashrightarrow Fe(l) + Al_2O_3(s)$

Friction Welding

- Use Friction to Generate Heat
 - High Speed Part
 - Causes Joint to Form

JOINING PROCESSES

BASIC CLASS NOTES

Definition of Brazing

- Joint forms Without Melting Base Materials
- Filler Metal Must Have a T_L of $450^{\circ}C$
- Filler Metal Must Wet the Base Metal Surfaces and Be Drawn into Joint by Capillary Action

Ref: <u>Brazing Handbook</u>;AWS (1991)

Definition of Soldering

- Similar to AWS Definition of Brazing
 - Non-Fusion Metallurgical Joining Process
 - Temperature Less than 450°C
 - Capillary Action Necessary
- Reasons for Definitions
 - Historical
 - Practical
 - Scientific
- Key is the Lower Temperature

JOINING PROCESSES

BASIC CLASS NOTES

Temperature 450°C

- Historical
 - 0 Brazes Based on Cu-Zn Alloys of Brasses
 - Solders Based on Sn Based Alloys 0
- Practical
 - Lowest T Braze Al-4Cu-10Si (T_M = 524°C) Highest T Solder Au-3Si (T_M = 363°C) 0
 - 0
- Scientific
 - Brazes Form Solid Solutions at Interface 0
 - Solders Form Intermetallics at Interface 0

Fluxes in Brazing

Filler Metal Must Wet the Base Metal • Surfaces and Be Drawn into Joint by Capillary Action

Ref: Brazing Handbook:AWS (1991)

- **Oxide Formation Must Be Prevented**
- You Will Need to Add Flux When Brazing

JOINING PROCESSES

BASIC CLASS NOTES

Brazing or Welding?

- Two Pieces of 1040 Steel
 - Joined With Copper Filler Metal
- Two Pieces of Copper
 - Joined With Copper Filler Metal

- Two Pieces of Copper
 - Joined With 70-30 Brass Filler Metal

• A Piece of Copper and a Piece of 1040 Steel • Joined With Copper Filler Metal

JOINING PROCESSES

BASIC CLASS NOTES

Sample Solder Alloys

- Mostly Tin (Sn) Based
- Historical Workhorse Lead(Pb)-Tin(Sn)

Solder	Tm (C)	Shear Strength (MPa)	Ductility %
Sn-Pb	183	28	1.3
Sn-Ag	221	30	0.69
Sn-Bi	138	24	1.3
95-5	280	30	18.3

Importance of Solder Joints

- Provides Electrical Contact
 - Requires Metallurgical Bond
 - Strength / Fatigue Resistance Required
 - Critical for Electronic Performance
 - Unglorified Part of Semiconductor Revolution
 - "For Want of a Nail ... A Kingdom was Lost"

JOINING PROCESSES

BASIC CLASS NOTES

Production of Solder Joints

- Form Contact Between Lead and Metal
 - Remove any Oxide or Impurity
 - $\circ \qquad \ \ {\rm Cause \ Molten \ Solder \ to \ Wet \ Metal}$
 - Solidify Solder
 - Remove any Residue

Miniaturization of Joints

- Increasing Amount of SMT
- Paste
 - Combination of Alloy Powder and Flux
 - Identified Based On Through-Hole Experience

Through-Hole Assembly

Surface Mount Assembly

JOINING PROCESSES

BASIC CLASS NOTES

Low Temperature Problems

- •
- Cleaning Required Prior to Soldering
- More Aggressive Fluxes are Needed •

- Very High Thermal Stress ٠
 - Solder is in Tension 0

JOINING PROCESSES

BASIC CLASS NOTES

<u>Summary</u>

- Welding
 - Base Metal and Filler Metal Melt
 - Strength Considerations
 - Fuel Sources
 - Oxide Prevention

- Brazing / Soldering
 - Only Filler Metal Melts
 - $\circ \qquad {\rm Same \ Considerations \ as \ In \ Welding}$
 - Problem With Metal Combinations

- Adhesive Bonding
 - Focus on Similarities