ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Electrical Properties Module

Outline

- Electrical Resistance
- Electrical Conductivity • Semiconductors
- Insulators • Capacitors

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Electrical Current Flow

- Measured By Ohm's Law
 - Current (I) -Amps
 - Voltage (V) -Volts
 - Resistance (R) -Ohms

V = IR

Experience / Inference

- What Happens if
 - Length of Bar Increases?
 - Area Decreases?
- I (Current)
 - Decreases
- R (Resistance)
- Increases
- Material Property
 - Resistivity

$$\rho = \frac{RA}{L}$$

• Conductivity

$$\sigma = \frac{1}{\rho}$$

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

<u>Example</u>

- Determine the Current Which Will Flow through 25m of Copper Wire (0.01 cm in diameter) When Subjected to 1mV.
- Determine
 - Resistivity
 - Resistance
 - Current Flow
- Resistivity

 \circ ρ = 1.724 x 10⁻¹⁰ Ωcm

<u>Step Two</u>

- Determine Resistance
- Resistivity

$$\circ \qquad \rho = 1.724 \text{ x } 10^{-10} \Omega \text{cm}$$

$$\rho = \frac{RA}{L}$$

$$R = \frac{\rho L}{A}$$

$$R = \frac{(1.724 \times 10^{-10} \,\Omega \cdot cm)(2500cm)}{(0.785 \times 10^{-4} \,cm^2)}$$

$$R = 0.005\Omega$$

Step Three

- Determine Current Flow
- Resistivity
 - $\circ \qquad \rho = 1.724 \text{ x } 10^{-10} \,\Omega \text{cm}$
- Resistance
 - \circ 0.005 Ω

$$V = IR$$
$$I = \frac{V}{R}$$
$$I = \frac{0.001V}{0.005\Omega}$$
$$I = 0.2A$$

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

 $\sigma = nq\mu$

Origin of Conductivity

- Conductivity Depends On
 - Number of Free Carriers (n)
 - Charge of Carriers (q) 1.6x10⁻¹⁹C
 - Mobility of Charge Carriers (μ)
- Number (n)
 - Depends on Fermi Energy
 - Temp Dependent
- Mobility (µ)
 - Velocity / Field Strength

$$\mu = \frac{v}{E}$$

Team Problem 3

- Calculate the Voltage Required to Cause 10mA of Current to flow through resistors 2.5 cm long and with a cross sectional area of 3.5 cm², prepared from polycarbonate, germanium and gold
 - PolyCarbonate $\sigma = 5 \times 10^{-17} (\Omega \text{ cm})^{-1}$
 - Ge $\sigma = 2.3 \text{ x } 10^{-2} (\Omega \text{ cm})^{-1}$
 - Au $\sigma = 4.3 \text{ x } 10^5 (\Omega \text{ cm})^{-1}$

$1.4 \mathrm{x} 10^{15} \mathrm{V}$
$3.1~\mathrm{V}$
$1.7 \mathrm{x} 10^{-7} \mathrm{V}$

 $=\frac{RA}{L}$

ELECTRICAL PROPERTIES

Mobility

- As Temperature Increases Conductivity Decreases in Metals
- Decrease of Mobility Term
 - Lower Net Velocity
 - Thermal Vibrations Knock Electrons Off Track
- $\mu = \frac{\overline{v}}{E}$

• Distance / Time Reduced

 $\rho = \rho_{RT} \left[1 + \alpha \left(T - T_{RT} \right) \right]$

In Copper ρ increase: by 50% Between 25 and 200°C

BASIC CLASS NOTES

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Two Different Wires

- Voltage Build Up Depends on Material
 - - 0 on Temperature

Thermocouple

Connect Two Wires and Measure Difference in Voltage •

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Band Theory of Materials

- **Electrical Conduction Requires** •
 - 0 Mobile Charge Carriers
- Ions in Solution •
- Electrons
 - 0 Available Energy States
 - 0 Band Theory Correct
 - Sea of Electrons Incomplete 0

Band Diagram Metal

- Partially Filled Valence Band at 0K •
- Electrons Require Little Energy to Conduct •
- E_{σ} Irrelevant
- Band Gap Differentiates Metal and Non-Metal •

<u>Metal</u>

Band Diagram Non-Metal

- Filled Valence Band at 0K •
- Electrons Require Large Energy to Conduct •
- •
- $\rm E_g < 2.0~eV$ $\rm \bar{E}_g > 2.0~eV$ Insulator Arbitrary Definition Practical Definition •

k=8.62x10⁻⁵ eV/K

What Temperature Corresponds to a kT of 2eV?

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Summary of Conductivity

- Designing for Electrical Conductivity Using Metals Requires Combining
- Mobility
 - Impurities
 - Temperature Dependence

$$\mu \equiv \frac{v}{E}$$

- Fermi Energy (Distribution)
 - Implications
 - Temperature Dependence

Determines n
$$f(E) = \left[e^{\frac{E-E_F}{kT}} + 1\right]^{-1}$$

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Temperature Dependent Conductivity

- For Intrinsic Semiconductor
- Number of Charge Carriers
 - Those that jump the Band Gap

$$n_{i} = Ce^{\frac{E_{a}}{2kT}}$$
$$\sigma = \sigma_{0}e^{\frac{E_{a}}{2kT}}$$

Temperature Dependent Conductivity

- For Extrinsic Semiconductor
- Three Temperature Ranges
 - Intrinsic (Very High T)
 - Exhaustion
 - Ionization (Very Low T)

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Photoconduction

- Energy Required to Excite Electrons
- Light Can Supply This Energy

<u>Burglar Alarm</u>

• Use Light as A Trigger

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

<u>Use of Insulators</u>

- Insulators Protect Us
 - Grab a Cord
 - Don't Die
 - That's Good
- Electrical Effect
 - Molecules May Respond to Voltage Difference
 - Hold Charge for Later Use

00000000000

No Effect

Response to Induced Electric Field

Parallel Plate Capacitor

- Charge Build Up on Plates
- Definition of Capacitance

$$C = \frac{Q}{V}$$

4

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Determination in Vacuum

• Based on Permitivity of Free Space

$$\varepsilon_0 = 8.85 \times 10^{-12} \, \frac{F}{m}$$

$$C = \varepsilon_0 \frac{A}{L}$$

A Capacitor Made of Two Plates 10cm² and separated by 0.1µm has a C=8.5x10⁻⁵F. If 12V are applied a charge buildup of 0.001C will occur.

Insertion of Dieelectric Material

- Increases Capacitance
 - Allows For Orientation and Charge BuildUp
 - Dielectric Constant

$$\kappa = \frac{\mathcal{E}}{\mathcal{E}_0}$$

$$C = \varepsilon \frac{A}{L}$$

ELECTRICAL PROPERTIES

BASIC CLASS NOTES

Frequency Dependence

- Capacitance Proportional to Polarizability Dipoles Must Respond to Electric Field ۲
- - 0 Orientation
 - 0 Ionic/Atomic
 - 0 Electronic

Fig. 2.2. Dispersion of molar polarisation in a dielectric (schematic).

Summary and Wrap-Up

- Electrical Resistance •
- **Electrical Conductivity** . 0 Semiconductors
- Insulators •
 - 0 Capacitors