IME 601 - FUNDAMENTALS OF MFG. ENG. CHEMICAL PROPERTIES MODULE BAS

BASIC CLASS NOTES

<u>Outline</u>

- Review of Electrochemistry
- Corrosion
 - Definition
 - Modeled as Galvanic Cell
 - Prevention

Review of Electrochemistry

- Electrons Drive Chemical Reactions
 - Movement of Charged Particles Creates Voltage
- Determining
 - Cell Potentials (Standard, Nernst Equation)
 - Thermodynamic Quantities
- Applications
 - Cladding
 - Plating
 - Electrolysis

IME 601 - FUNDAMENTALS OF MFG. ENG.CHEMICAL PROPERTIES MODULEBAS

BASIC CLASS NOTES

Chemical Reaction

- Drop Zn Metal in Copper Sulfate
 - Copper Precipitates
 - Zinc Disappears

• Chemical Reaction

$Zn(s) + CuSO_4(aq) \longrightarrow Cu(s) + ZnSO_4(aq)$

https://www.youtube.com/watch?v=2gPRK0HmYu4

IME 601 - FUNDAMENTALS OF MFG. ENG. **CHEMICAL PROPERTIES MODULE BASIC CLASS NOTES**

Further Analysis

Chemical Reactions Occur as a Result of Electron Exchange Between Atoms •

Elec	etron Transfer		
•	Electrons Transfered From Zn to Cu	$\mathbf{Zn}^{0} + \mathbf{Cu}^{2+}$	
		$\mathbf{Zn}^{2+} + \mathbf{Cu}^{0}$	
•	Zinc		
	• Loses Two Electrons		
	• Oxidation	$Zn^{0} -> Zn^{2+} + 2e^{-}$	
•	Copper		
	• Gains Two Electrons		
	• Reduction	$Cu^{2+} + 2e^{-} - > Cu^{0}$	

IME 601 - FUNDAMENTALS OF MFG. ENG.CHEMICAL PROPERTIES MODULEBASIC CLASS NOTES

Half Reactions

- 2 Reactions Required
- Anode
 - Oxidation
 - Produces Electrons
 - \circ Negative E^0

 $Zn^{0} -> Zn^{2+} + 2e^{-}$

- Cathode
 - Reduction
 - Consumes Electrons
 - $\circ \qquad \ \ \, \text{Positive } E^0$

 $Cu^{2+} + 2e^{-} -> Cu^{0}$

IME 601 - FUNDAMENTALS OF MFG. ENG. CHEMICAL PROPERTIES MODULE BASIC

BASIC CLASS NOTES

Calculation of Voltage

- Use Standard Reduction Potentials
- E⁰ Must Be Positive
 - \circ Zn²⁺ + 2e⁻ --> Zn⁰ E⁰ = -0.76V
 - \circ Cu²⁺ + 2e⁻ --> Cu⁰ E⁰ = 0.34V

IME 601 - FUNDAMENTALS OF MFG. ENG. CHEMICAL PROPERTIES MODULE

BASIC CLASS NOTES

E⁰ For Half Reactions

- No Half Reaction Occurs Alone
- Standard Reduction Potential Table
- \circ 2H⁺ + 2e⁻ --> H₂(g) E⁰ = 0.00V
- Defined

Facts About Batteries

- Voltage Independent of Size
 AAA, AA, A, B, C, D
- Energy Output Depends on Size
- Batteries Die
 - Approach Equilibrium
 - Voltage Drops
- Both Reactions Must Occur
- Use Experience as a Guide

IME 601 - FUNDAMENTALS OF MFG. ENG.CHEMICAL PROPERTIES MODULEBAS

BASIC CLASS NOTES

Thermodynamics

- Definition of Volt
 - Joule/Coulomb
 - Energy/Charge
- Electrons Carry Energy

$\Delta G^0 = -nFE^0$

Determine Energy Output

- Design a Cu/Zn Battery Which Can Power a 10W Bulb for 1 Day
- Multistep Problem
 - Determine Required Energy
 - Determine Energy Output From Voltage
 - Determine Size
- Energy Required

$$E = (10 W) \left(3600 \frac{\sec}{hr} \right) \left(24 \frac{hrs}{day} \right) = 864 \ kJ$$

IME 601 - FUNDAMENTALS OF MFG. ENG. CHEMICAL PROPERTIES MODULE BAS

BASIC CLASS NOTES

Determine Available Energy

• Energy Required

$$E = (10 W) \left(3600 \frac{\sec}{hr} \right) \left(24 \frac{hrs}{day} \right) = 864 \ kJ$$

• Use ΔG^0 , E^0 Relation

$$\Delta G^{0} = -nFE^{0}$$
$$\Delta G^{0} = -2\left(96,500\frac{C}{mole}\right)1.1V$$
$$\Delta G^{0} = -212.3\frac{kJ}{mole}$$

Specify Amounts

- Energy Required • 864kJ
- Energy Available • 213.3kJ/mole
- Supply Required

• 4.1 moles

- o 269 g Zn Metal
- 638 g Copper Sulfate to Be Dissolved in 4 liters of Water (1M Solution)
- This is a 1kg or 2.2 lb Battery

IME 601 - FUNDAMENTALS OF MFG. ENG. CHEMICAL PROPERTIES MODULE BASIC

BASIC CLASS NOTES

Battery Death

• Determine Voltage of Cu/Zn Battery When Half Reactants are Consumed

Effect of Concentration Change

- Reactants Change
 - \circ CuSO₄ From 1.0M to 0.5 M
- Products Change \circ ZnSO₄ From 1.0M to 1.5 M

$$E = E^0 - \frac{RT}{nF} \ln Q$$

• Chemical Reaction \circ Zn(s) + CuSO₄(aq) --> Cu(s) + ZnSO₄(aq)

$$E = 1.10V - \frac{\left(8.314 \frac{J}{molK}\right)(298K)}{(2)\left(96,500 \frac{C}{mole}\right)} \ln \frac{1.5M}{0.5M} = 1.086V$$

Voltage Over Time

- Constant Decay
- Note How Slowly Voltage Drops

E/Ezero	Delta E	Q	Extent	Remaining
1	0	1	0	1
0.9	0.11	5265.193	0.99962	0.00038
0.8	0.22	2.8E+07	1	7.2E-08
0.7	0.33	1.5E+11	1	1.4E-11
0.6	0.44	7.7E+14	1	2.6E-15
0.5	0.55	4E+18	1	0
0.4	0.66	2.1E+22	1	0
0.3	0.77	1.1E+26	1	0
0.2	0.88	5.9E+29	1	0
0.1	0.99	3.1E+33	1	0
0.05	1.045	2.3E+35	1	0
0.02	1.078	3E+36	1	0
0.01	1.089	7E+36	1	0
0.001	1.0989	1.5E+37	1	0
0.0001	1.09989	1.6E+37	1	0

IME 601 - FUNDAMENTALS OF MFG. ENG. CHEMICAL PROPERTIES MODULE BASIC

BASIC CLASS NOTES

Examples of Batteries

• Copper - Zinc

Corrosion

- The Environmental Degradation of Materials
- All Materials are Vulnerable
 - Metals Especially
- Primary Cause of Failure-- Big Bucks
- Electrochemical Reactions

Metal Oxidation

- Most Metals Oxidize
- Destructive Oxides • Rust
- Protective Oxides
 - Aluminum
 - Copper

IME 601 - FUNDAMENTALS OF MFG. ENG.CHEMICAL PROPERTIES MODULEBASIC CLASS NOTES

Corrosion of Steel

• Familiar Formation of Rust

(1) School L, School L, School Peers Construction of the International Construction of the International

• Model as Cell

Predict Products

IME 601 - FUNDAMENTALS OF MFG. ENG. **CHEMICAL PROPERTIES MODULE**

BASIC CLASS NOTES

Bi-Metallic Corrosion

- Place Steel (Fe) and Al in ContactoWith Water and Dirt
 - - 0 Aluminum Corrodes

IME 601 - FUNDAMENTALS OF MFG. ENG.CHEMICAL PROPERTIES MODULEB.

BASIC CLASS NOTES

Corrosion Prevention

- Prevent One of the Half Reactions
 - Paint Prevents Oxygen From Reaching Fe
 - Use Protective Oxide

Sacrificial Metals

- Galvanize Steel
 - Place Zinc Coating on Fe
 - Zn Corrodes at Expense of Steel
- Sacrifical Anodes
 - Make a Circuit With a More Reactive Metal
- Team Problem Determine Cell Potentials for Bi-Metal Reactions

Summary and Wrap Up

- Review of Electrochemistry
- Corrosion
 - Definition
 - Modeled as Galvanic Cell
 - Prevention