CASTING PROCESSES

BASIC CLASS NOTES

<u>Class Preparation and Reading Review</u> This should be completed prior to class

Key Concepts to Be Discussed in Class:

Questions About Subject Matter for Class Session:

<u>Outline</u>

•

- General Casting Principles
- Specific Processes
 - Green Sand Casting
 - Lost Foam Casting
 - Investment Casting
 - Permanent Mold Casting
 - Die Casting
 - Acknowledgment
 - W.R. Riffe (For Use of Casting Images)

CASTING PROCESSES

BASIC CLASS NOTES

Casting in General

- Basic Definition
 - Pour Liquid Material (Metal) Into a Cavity of Prescribed Geometry and Let it Solidify

- Need to Consider
 - Melting of Metal (Energy, Purity)
 - Freezing of Metal (Heat Transfer, Thermal Ranges)
 - Shrinkage and Porosity
 - First Step in Many Manufacturing Processes
- Wide Variety of Shapes can be Produced

CASTING PROCESSES

BASIC CLASS NOTES

Concept Question

• What Has to Happen (Start to Finish) to Form Something Through Casting?

• What Technical Considerations are Important?

- We are Going to Discuss Several Forms of Casting in Class Today Make a List of The Questions Which Need to Be Asked as You Learn About Each Process
 - Casting in General

• Non-Technical Considerations

CASTING PROCESSES

BASIC CLASS NOTES

Melting

- First Step in Casting
- Requires Energy
- Example for 10kg of Aluminum
 - $\circ \qquad \text{Heat Up Solid to } T_{M}$

$$\Delta H = VC_{PS} (T_M - T_0)$$

$$(3.7 \times 10^{-3} m^3) (3.0 \times 10^6 \frac{J}{m^3 C}) (660C - 25C)$$

$$7.0 \times 10^6 J$$

$$\label{eq:properties of} \begin{split} & \underline{Aluminum} \\ & \overline{T_M} = 660^\circ C \\ & \Delta H_F = 9.5 \times 10^8 \ J/m^3 \\ & C_{PS} = 3.0 \times 10^6 \ J/m^3 K \\ & C_{PL} = 2.6 \times 10^6 \ J/m^3 K \end{split}$$

 $\circ \qquad {\rm Melt \ the \ Solid}$

$$\Delta H = V \Delta H_F$$

$$\left(3.7 \times 10^{-3} \, m^3\right) \left(9.5 \times 10^8 \, \frac{J}{m^3}\right)$$

$$3.5 \times 10^6 \, J$$

$$\Delta H = VC_{PS} \left(T_M - T_0 \right)$$

$$\left(3.7 \times 10^{-3} m^3 \right) \left(2.6 \times 10^6 \frac{J}{m^3 C} \right) (100C)$$

$$0.96 \times 10^6 J$$

CASTING PROCESSES

BASIC CLASS NOTES

Solidification

- **Requires the Following**
 - Heat Transfer to Mold
 - Time
- Early Solidification
 - Can Cause Defects

$$t_s = C \left(\frac{V}{A}\right)^2$$

A Sphere Will take 22% Longer to Solidify than A Cube

Shrinkage

- Solid Metals are More Dense Than Liquid Metals
 - Solid Aluminum $\rho = 2.7$ g/cc
 - Liquid Aluminum $\rho = 2.4$ g/cc

Metal	Shrinkage
Al	6.6%
Copper	4.9%
Brass	4.5%
Steel	3.0%
Mg	4.2%

CASTING PROCESSES

BASIC CLASS NOTES

Solidification of Alloys

- Most Alloys Solidify Over A Range of Temperatures
 - Can Cause Compositional Variation
 - Can Cause Hot Tearing

CASTING PROCESSES

BASIC CLASS NOTES

Team Problem

- In Order to Make The Part Shown (Assume Melting Is Accounted For)
 - How Can We Design a Mold?

• Take Into Account Heat Transfer, Solidification, Shrinkage (etc.)

CASTING PROCESSES

BASIC CLASS NOTES

Green Sand Casting

- Use Green Sand As a Mold
 - Heat Transfer Through Green Sand
- Place Pattern In Sand
 - Requires PreMade Pattern
 - Well Packed Sand to Hold Cavity
- Requires Two Halves
 - The Mold Cavity Will Be in the Center
- Assembled Casting Mold

CASTING PROCESSES

BASIC CLASS NOTES

Procedure for Making Mold (1/3)

- •
- Make Drag First Place Pattern in Drag
 - 0 Add Gates and Runners

Procedure for Making Mold (2/3)

- Make the Cope Second •
 - 0 Place Pattern in Cope
 - 0 Add Sprue and Risers

CASTING PROCESSES

BASIC CLASS NOTES

Procedure for Making Mold (3/3)

- Assemble Drag and Cope
- Pour Metal
- Variations
 - Insert Sprue and Runner on Complete Assembly

CASTING PROCESSES

BASIC CLASS NOTES

Advantages of Green Sand Casting

- Inexpensive
 - Mold Material Cheap and Recylable
 - Make One and Only One Pattern
- Versatile
 - Can Make Variety of Shapes
 - Can Make Automate
 - Can Make a Variety of Materials

Concerns With Green Sand Casting

- Mold Cavity Surrounded by Sand
 - Precision Problems
 - Transfer Problems
 - Need to Make 2 Parts
 - Cope
 - Drag
- Time to Cool
 - Time in Production
 - Still Parts

CASTING PROCESSES

BASIC CLASS NOTES

Lost Foam Casting

- Full Mold or Evaporative Casting
 - Make Pattern out of Polystyrene
 - Place In Sand
 - Add Sprue
- Add Hot Metal
 - Mold Pattern Evaporates

Lost Foam vs Green Sand Casting

Similarities

CASTING PROCESSES

BASIC CLASS NOTES

Investment Casting

- Lost Wax Casting
 - \circ Use Wax to Make Pattern
 - Form Ceramic Mold
 - Pour In Metal

Injection wax or plastic pattern

Wax pattern Ejecting pattern

Investment Casting

- Making of Mold
 - Get a Pre- Ceramic Coating

Slurry coating

Stucco coating

Completed mold

CASTING PROCESSES

BASIC CLASS NOTES

Investment Casting

- Final Formation of Mold
 - Heat and Cure Ceramic
 - Melt Wax
- Mold Cavity Remains

Completed mold

Pour Metal Into Mold
 Final Step of Process

Investment vs Green Sand Casting

Similarities

Pattern

CASTING PROCESSES

BASIC CLASS NOTES

Permanent Mold Casting

- •
- Make a Mold From High T_M MetalOInclude Gate Runner System

Permanent Mold vs Green Sand Casting

Similarities

CASTING PROCESSES

BASIC CLASS NOTES

Die Casting

- Permanent Mold Casting Under Pressure
 - Cold Chamber Illustrated

Die vs Green Sand Casting

Similarities

CASTING PROCESSES

BASIC CLASS NOTES

Summary

- Casting is Conceptually One of the Easiest Processes to Visualize and Implement
- Casting Processes Comparison
 - Similarities
 - Differences
- Acknowledgment
 - W.R. Riffe (For Use of Casting Images)

<u>After Class Review</u> Summarize Key Concepts and List Further Questions

<u>Key Concepts</u>	Questions