MACHINING PROCESSES

BASIC CLASS NOTES

Read	ing Rev	iew and	Class	Prepara	<u>ation</u>
This	should	be fille	d out p	rior to	class.

Key Concepts to Be Discussed in Class:

Questions About Subject Matter for Class Session:

MACHINING PROCESSES

BASIC CLASS NOTES

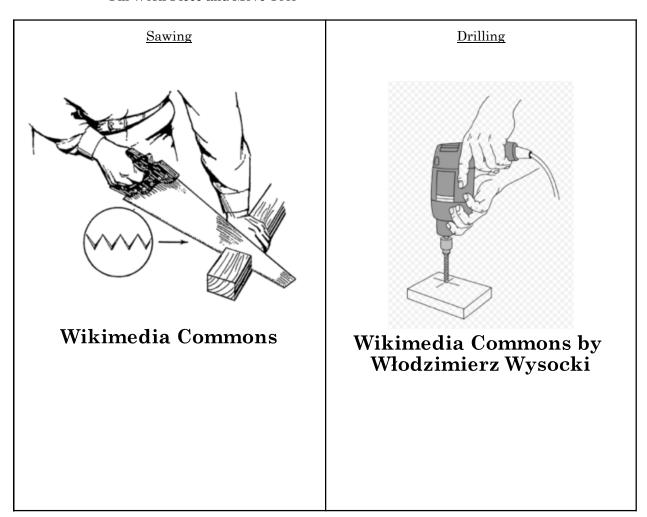
<u>So Wha</u>	Often V	Who Cares? We Need to Remove Material to Finish a Part
•	Various o	s Processes Lathes
	0	Milling
	0	Drilling
	0	Others
•	Key Pr	inciples Power and Energy Consumption Tool Life and Productivity
Outline •	Key Pr	inciples
•	Machin	ing Processes
•	Referen	nce (Pictures) Kalpakian S.: Manufacturing Engineering and Technology; Addison Wesley, © 1995 W. R. Riffe

MACHINING PROCESSES

BASIC CLASS NOTES

Concept Question

- Write a Working Definition of Machining
- Apply this to the Processes to Be Discussed this Class Session
 - What Are They?
 - How Are They Similar ?
 - How Are They Different?

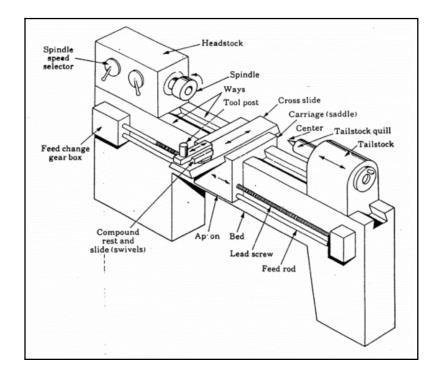

MACHINING PROCESSES

BASIC CLASS NOTES

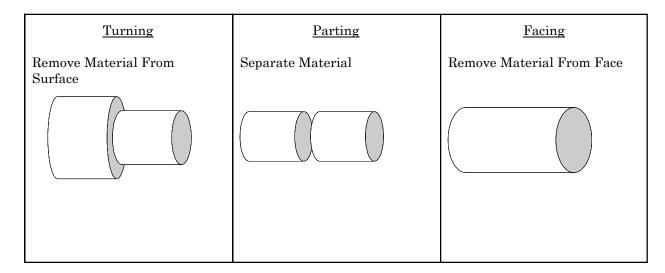
Sawing and Drilling

- Common Experience

 Fix Work Piece and Move Tool



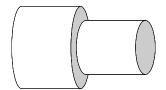
MACHINING PROCESSES


BASIC CLASS NOTES

The Lathe

- Rotate Workpiece
 - Use Tools to
 Remove Material
 - Turning
 - Parting
 - Facing
 - o Drilling
 - o Boring

Lathe Operations



MACHINING PROCESSES

BASIC CLASS NOTES

Material Removal Rate

- Need to Calculate
 - Cutting Speed
 - o Material Removal Rate
- Not Simply rpm (N)

Cutting Speed (V)

$$V = N\pi D$$

D = Diameter

Material RR (Q)

$$Q = Vdf_r$$

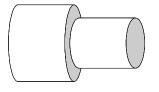
d = Depth of Cut

 $f_r = feed rate (length /rev)$

Energy Requirements

Material Removal Requires Energy
 Specific Energy (U) = Energy/Volume

$$P = UQ$$


Material	U (J/mm³)
Al Alloys	0.4-1.1
Cu Alloys	1.4-3.3
Steel	2.7-9.3
Stainless Steel	3.0-5.2
Ni Alloys	4.9-6.8
	1.0 0.0

MACHINING PROCESSES

BASIC CLASS NOTES

Team Problem

- How Much Power is Required For the Following Operation on an Aluminum Part?
 - Operating Speed 800 rpm
 - Original Diameter 25mm
 - O Depth of Cut 0.3mm
 - Feed Rate 1.5x10⁻³ mm/rev
- Determine Cutting Speed (V)

$$V = N\pi D$$

$$= \left(13.3 \frac{rev}{s}\right) \pi \left(25mm\right)$$

$$= 1.0 \times 10^3 \frac{mm \ rev}{s}$$

• Determine Material Removal Rate (Q)

$$Q = Vdf_r$$

$$= \left(1.0 \times 10^3 \frac{mm \ rev}{s}\right) (3mm) \left(0.25 \frac{mm}{rev}\right)$$

$$= 785 \frac{mm^3}{s}$$

• Determine Required Power (P)

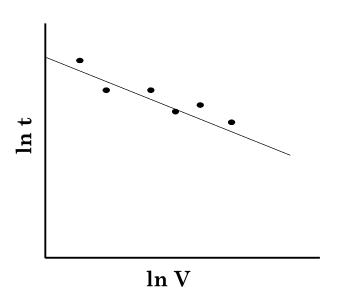
$$P = UQ$$

$$= \left(0.7 \frac{J}{mm^3}\right) \left(785 \frac{mm^3}{s}\right)$$

$$= 550W$$

Tooling

- Tools Usually Made From Hard Materials
 - High Speed Steel
 - Cemented Carbides
 - o Ceramics


Material	Cost	Cut Speed	Wear
High Speed Steel	Low	Low	Poor
Cemented Carbide	Moderate	Moderate	Fair
Ceramics	High	High	Good

Tool Life

• Tools Will Wear Out

o Taylor Equation

$$Vt^n = C$$

$$\ln t = \frac{1}{n} \ln C - \frac{1}{n} \ln V$$

MACHINING PROCESSES

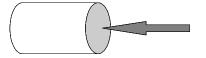
BASIC CLASS NOTES

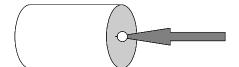
Team Problem

- The Tool Has a Part Life of 8 hrs
 - If I Double the rpm the Part Life becomes 2 hrs
 - What if I Only Increase the rpm by 50%
- Importance of C

• Why Calculation of C is Not Required

$$\left(\frac{t_1}{t_2}\right) = \sqrt[n]{\frac{V_2}{V_1}} = \sqrt[0.7]{1.5} = 1.8$$

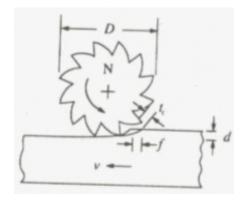

- time = 4.4 hrs
 - \circ So Doubling RPM Reduces Part Life from 8 hrs to 2 hrs
 - Raising RPM to 1.5x Original Reduces Part Life from 8 hrs to 4.4 hrs.


MACHINING PROCESSES

BASIC CLASS NOTES

Drilling and Boring

- Rotate Work Piece and Make Hole
 - o Drilling Make Hole
 - o Boring Expand Hole

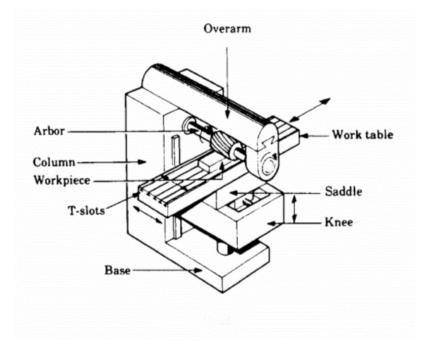


MACHINING PROCESSES

BASIC CLASS NOTES

Milling

- One of the Most Widely Used Processes
 - Rotating Tool
 - o Moving Tool or Workpiece
- Can Be Used to
 - o Flatten Edge
 - o Flatten Face
 - o Cut Slit
- Milling Machines Often Have Other Features
 - Combined With Drills / Lathes

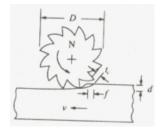

MACHINING PROCESSES

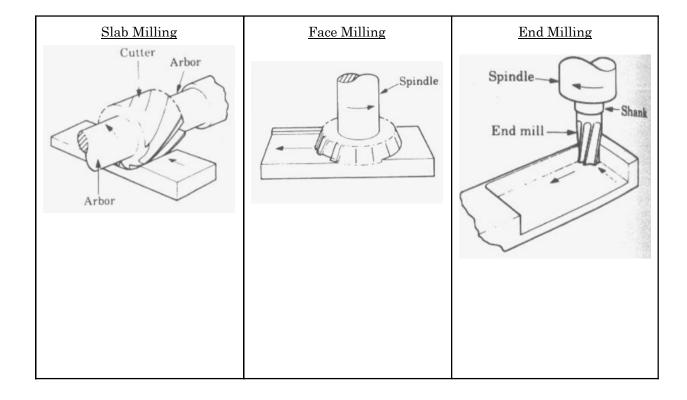
BASIC CLASS NOTES

Horizontal Milling

- Slab Milling Shown

 O Rotating Tool
 - Moving Work Piece 0
- Process
 - Depth of Cut (?)
 - Productivity 0

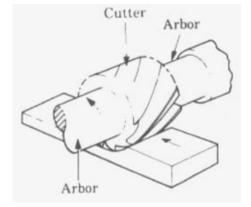

Ref. W. Riffe Slides


MACHINING PROCESSES

BASIC CLASS NOTES

Basic Milling Operations

- Three Forms
 - o Same Basic Principle

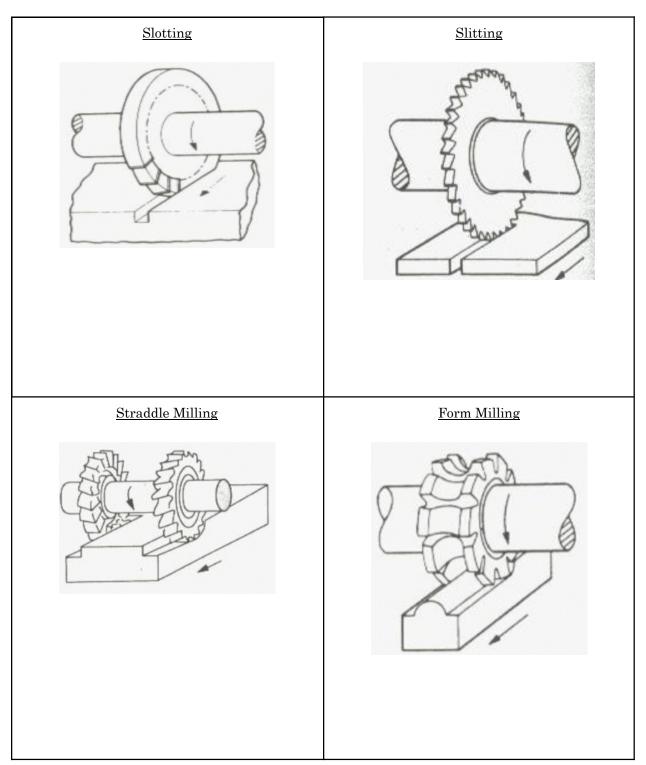


MACHINING PROCESSES

BASIC CLASS NOTES

Milling Productivity

- Same Basic Parameters as Lathes
 - Cutting Speed (V)
 - o Material Removal Rate (Q)
 - o Power (P)
 - o rpm (N)
 - O Depth of Cut (d)
- Other Parameters
 - width of piece (w)
 - o work piece velocity (v)



Cutting Speed	<u>Material RR</u>	<u>Power</u>
$V = \pi DN$	Q = wdv	P = UQ

MACHINING PROCESSES

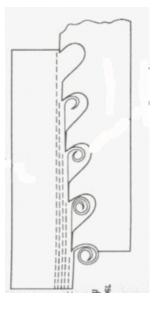
BASIC CLASS NOTES

Specialized Milling Processes

MACHINING PROCESSES

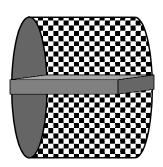
BASIC CLASS NOTES

Team Problem


When Would You Use Each Milling Process in Manufacturing?

MACHINING PROCESSES

BASIC CLASS NOTES


Broaching

- Milling and Lathes Are Not Always Practical
 - o Internal Holes
 - o Irregular Holes
 - Irregular Surfaces
- Broaching Tool
 - o Successively Larger Teeth
 - o Horizontal or Vertical

Grinding

- Abrasive Wheel Against Workpiece
 - High Tolerances
 - o Surface Finish
- Abrasive
 - o Grit Size
 - Hard Soft
- Safety
 - o Hands / Eyes
 - o Broken Wheels
- Same Productivity Terms

MACHINING PROCESSES

BASIC CLASS NOTES

Advanced Machining Techniques

- Waterjet
 - $\circ \qquad \quad \text{High Pressure Water} \\$
 - o Abrasive Water Jet
- Laser Beam
 - o Very Precise
 - o Expensive
 - Melt Material
- Electrochemical
 - Utilize a Chemical Reaction

Summary

- Machining Techniques
 - Sawing
 - o Drilling
 - o Lathes
 - o Milling
 - o Broaching
 - o Grinding
 - Advanced
- Production / Cost Considerations
 - o Material Removal Rate
 - $\circ \qquad \quad \text{Tool Life}$
 - o Energy Costs