ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

ELECTRONIC MANOFACTORING	DASIC CLASS NOTES
Reading Review and Class Preparation This should be filled out prior to class.	
Key Concepts to Be Discussed in Class:	
Questions About Subject Matter for Class Session:	

So What? Why? Who Cares?

- Most Electrical Devices We Use Today Would Not Be Possible
 - If Everything had to be hard wired?
 - o Electric Controls are Everywhere

ELECTRONIC MANUFACTURING

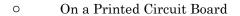
BASIC CLASS NOTES

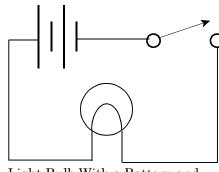
O	ut	li	ne

- Circuits on Circuits on Circuits
 - O Dissect the Populated Circuit Board

- The Board Itself
 - o Fabrication
 - Component Placement and Connection

• The IC Package


- The Integrated Circuit
 - Component Creation
 - o Circuit Creation


ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Electrical Circuits

- Definition of Circuit
 - A Closed Path for Electricity to Flow in Order to Achieve a Specific Purpose
- Circuits Can Be
 - Hard Wired

Light Bulb With a Battery and Switch

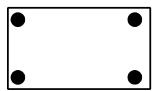
 \circ On a Silicon Chip Inside a Package

Concept Question

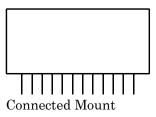
- Obviously Circuits Can Be More Complicated than the one Shown
- What is Necessary for the Light Bulb Circuit to Work?
- What Similar Things Would be Necessary for a Circuit Mounted to a Board?

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES


Electrical Components	
Resistor	AND Gate
Capacitor	Op Amp
Diode	Integrated Circuit
Transistor	

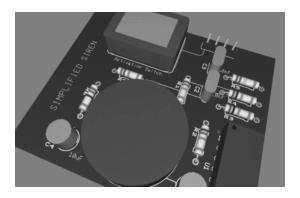
ELECTRONIC MANUFACTURING

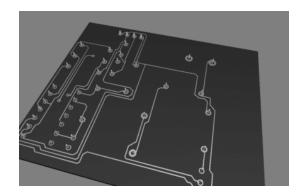

BASIC CLASS NOTES

Mounting of Board

- The Circuit Board Must Be Made Part of the Larger Assembly
 - o Programmable Thermostat
 - o Computer
 - Automotive Sensing Unit

Hard Mount

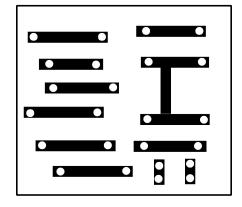



ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

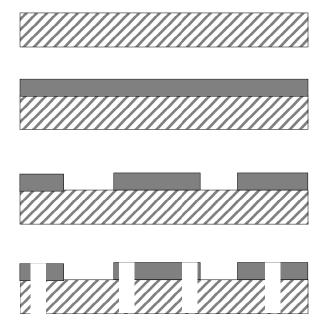
Concept Question

- Determine the Steps Needed to Make a Printed Circuit Board
 - Make a Sketch if It Helps
 - Consider the Last Four Slides
 - Try to Order Them
 - What is the End Product?


From: Prof. M. Thompson

ELECTRONIC MANUFACTURING

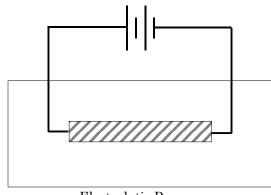
BASIC CLASS NOTES


The Goal

- A Board on Which Components Can Be Placed
 - Appropriate Electrical Connections Made
 - Appropriate Insulation
 - o Holes

The General Process

- Start With Insulating Material
- Place Copper on Top
- Remove Unwanted Copper
- Drill Holes



ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Step One - Copper on Board

- Board
 - Insulating Polymer
 - FR-4 (Resinated Glass Cloth) Most Common
- Copper Application
 - Plating (Dipping)
 - o Electrolytic Process
 - \circ 7x10⁻⁴mm/min
 - \circ 320 A/m²

Electrolytic Process

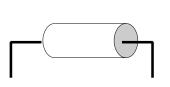
Plating Enhanced by Application of Electric Current

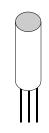
ELECTRONIC MANUFACTURING

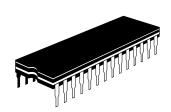
BASIC CLASS NOTES

Removal of Copper

- Copper Removed From Areas
 - o Provide Resistance
 - o Only Required Connections Remain
- Five Step Process
 - PhotoResist Application
 - LayOut of Pattern
 - Exposure
 - o Etching
 - o Resist Removal

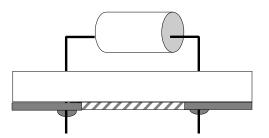

Copper Placed On FR-4	
Resist Placed on Copper	
Pattern and Exposure	
After Exposure Resist Changes	
Etching Removes Exposed Resist and Copper	
Remove Remaining Resist	
Ready for Drilling and Component Placement	


ELECTRONIC MANUFACTURING


BASIC CLASS NOTES

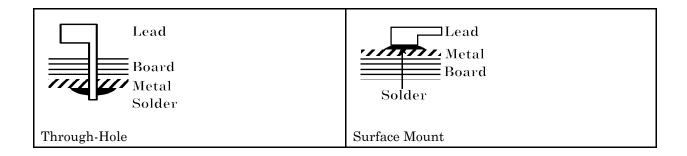
Mounting of Components

- Components
 - Oddly Shaped
 - O Have Different No. of Leads
- Must Be Fixed
 - o Can't Move Around
 - o Fall Off



Establishing Electrical Connection

- The Components
 - Must Be Connected Electrically
 - o Insulated From Each Other
- Electrical Connection
 - o Requires Metal Path
 - o Requires Connection to Path



ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Component Placement

- Through Hole
 - Connection on Bottom
 - Components on Top
 - Solder Applied After Placement
- Surface Mount
 - Connection on Top
 - Components on Top
 - o Solder Applied Before Placement

Recent Technical Challenges


- Multilayer Circuit Boards
 - o Double Sided
 - True Multilayer
- Solder Changes
 - o Sn-Pb Solder Being Banned
 - o Sn-Ag-Based Solders Higher Melting Point
- Environmental Consciousness
 - o Material Bans
 - Processing
 - o Recycling

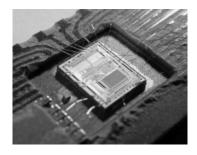
ELECTRONIC MANUFACTURING

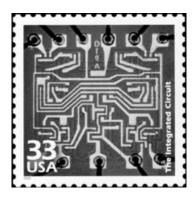
BASIC CLASS NOTES

<u>Integrated Circuits - Need</u>

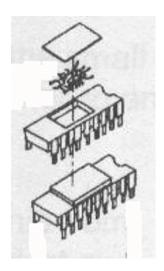
- Populated Circuit Boards are Too Large for Many of Today's Applications
 - The Overall Size Would Make Many Products Unrealistic
 - Electronics are Based on IC's
 - Ref: Prof. M. Thompson

ELECTRONIC MANUFACTURING


BASIC CLASS NOTES


Integrated Circuit

- Commonly We Hold the IC Package
 - o Integrated Circuit Inside
 - Packaging Surrounds IC


Wikipedia

Prof. M. Thompson

USPS

Packaging

- The Integrated Circuit Must Be Placed in a Package
 - Safety from Surroundings
 - o Thermal Dissipation
 - o Electrical Connection to Printed Circuit Board

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Concept Question

•	The	Integrated	Circuit	is
•	1110	minucaranca	CIICUIU	10

- Small 3mm x 3mm (or smaller)
- Contains Upwards of 100,000 Devices
- Is a Complete Circuit
- How Is This Similar to a Printed Circuit Board?

• What Features are Necessary?

• What Processing Steps are Necessary?

• Think Like Aristotle

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Silicon

- Silicon is an Intrinsic Semiconductor
 - Small But Measureable at Room Temperature
 - \circ σ=4.5x10⁻⁶ (Ωcm)⁻¹

Н							He
Li Na K Rb	Be	В	С	Ν	0	F	Ne
Na	Mg	Al	Si	Р	S	CI	Ar
K	Ca	Ga	Ge	As	Se	Br	Kr
Rb	Sr	In	Sn	Sb	Те		Xe
Cs	Ba	TI	Pb	Bi	Ро	At	Rn

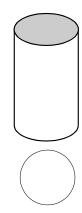
Versatility of Silicon

- Can Change Conductivity / Resistivity
 - o Add B, Al -OR- P, As
- Can Metallize
 - o Deposit Metal on to Si
 - o Create Polysilicon
- Can Create Insulating Layer
 - Oxidize form Silica
- Made From Most Abundant Material on Earth

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Making Devices [Components]


Resistor	Add a p-type or n-type Dopant
Diode	Create Adjacent p-type and n-type Regions
Transistor	Create p-n-p or n-p-n Regions

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Single Crystal Silicon Wafer

- Must Be Extremely Pure (EGS)
 - React Silica with C in Furnace
 - o 98% Pure Si Forms
 - Form Trichlorosilane
 - Purify
 - o Form Si from Trichlorosilane
 - o Form Single Crystal

Adding Impurities

- Two Methods
 - \circ Diffusion
 - Ion Implantation
- Chemical Reactions
 - Metallization
 - Oxidation

Diffusion

When Different Materials are Placed in Contact - They Will Mix Even in Solid State

Ion Implantation

Use Electrical Field to Force Ions into Material

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Making Diode (n-p)

• Need to Make Adjacent n and p regions

Silicon Wafer	
	<u></u>
n-type dopant	
n-Silicon	
Add Photoresist	
Pattern Exposure	
_	
Develop Photoresist	
Develop I notoresist	
Etch Photoresist	
Ion Implantation	111
F 133-22-2	

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Finishing Job

• Need to Add Metal and Insulation for Devices on Circuit

This is one device on the IC There may be 10^5 or More.

ELECTRONIC MANUFACTURING

BASIC CLASS NOTES

Summary

- Circuits on Circuits on Circuits
- Populated Circuit Board Assembly
 - Copper on FR-4
 - Place Copper and Selectively Remove
 - o Component Placement
 - o Soldering

- Integrated Circuit Creation
 - Compare with Above Starting with Silicon
 - Packaging

- Acknowledgment
 - o Profs. D. J. Leffen. M. Thompson