1) You are given a stress-strain curve (and the blow-up). You need to determine if a bar with a cross-sectional area A_0 can support a load F in pure tension without showing permanent deformation.

a) Describe what steps you would take.

2) You are given a stress-strain curve (and the blow-up). The bar must support a load F in pure tension without showing permanent deformation. Determine the required with a cross-sectional area $\rm A_0$

a) Describe what steps you would take.

3) You are given a stress-strain curve (and the blow-up). A bar with a cross-sectional area $A_{\rm 0}$ must support a load F in pure tension without showing permanent deformation. Determine F.

a) Describe what steps you would take.

4) You are given a stress-strain curve (and the blow-up). A bar (length = L_0) is subjected to a stress between greater than the yield strength but less than the ultimate tensile strength. You need to determine if the length under load (L_F) will exceed a critical value (L_C).

a) Describe what steps you would take.

Using the stress-strain curves above determine the ductility as either

- \Box the strain after failure
- $\Box \qquad \text{the strain at UTS}$
- \Box the strain at YS

Report Values. Justify your answer and explain why the other two options are wrong.

Using the stress-strain curves above determine the modulus based on the following methods

- \Box the initial slope
- $\hfill\square$ the slope of the line used to determine the yield strength.

Report Values and explain both consistencies and inconsistencies which occur.

Using the stress-strain curves above determine the max strain as either

- \Box the strain after failure
- $\Box \qquad \text{the strain at UTS}$
- \Box the strain at YS

Report Values. Justify your answer and explain why the other two options are wrong.

Using the stress-strain curves above determine the UTS as either

- \Box the stress at failure
- $\hfill\square$ the stress at which permanent deformation begins
- \Box the stress at which the permanent strain is equal to $2x10^{-3}$
- \Box the stress at which the stress-strain curve becomes non-linear
- \Box the maximum stress

Report Values. Justify your answer and explain why the other options are wrong.

Using the stress-strain curves above determine the Yield Strength as either

- \Box the stress at failure
- $\hfill\square$ the stress at which permanent deformation begins
- \Box the stress at which the permanent strain is equal to $2x10^{-3}$
- $\hfill\square$ the stress at which the stress-strain curve becomes non-linear
- \Box the maximum stress

Report Values. Justify your answer and explain why the other options are wrong.

A bar of material has an initial length of 80cm and a cross-sectional area of 2.4cm². Compare the force required, length under load, and the increase in yield strength (compared to original as shown above) for materials created by work hardening the above material to 25% and 25% of max.

A bar of material has an initial length of 80cm and a cross-sectional area of 2.4cm². Compare the force required, length under load, and the increase in yield strength (compared to original as shown above) for materials created by work hardening the above material to 25% and 25% of max.

A bar of material has an initial length of 80cm and a cross-sectional area of 2.4cm². Compare the force required, length under load, and the increase in yield strength (compared to original as shown above) for materials created by work hardening the above material to 25% and 25% of max.