BASIC CLASS NOTES

<u>Reading Review and Class Preparation</u> This should be filled out prior to class.

Key Concepts to Be Discussed in Class:

Questions About Subject Matter for Class Session:

<u>Outline</u>

- Definiton of Powder Processing
 - Role of Surface Energy
- Powder Processed Materials
- Products Made From Powder Processes
- Powder Processing Steps
- Advantages and Disadvantages of Powder Processing

BASIC CLASS NOTES

OCTOBER 21, 2015

Powder Processing

- A Technique Whereby Powder Particles are Joined to Form a Continuous Solid Part Without Melting
 - Solid State Process
 - A Single Part is Formed From Powder

Casting	Powder Processing
Liquid is Poured into a Defined Shape and Solidified	Powder is Poured into a Defined Shape and the Powder Particles are Joined

BASIC CLASS NOTES

OCTOBER 21, 2015

Powder Processed Materials

- Avoid Melting
 - High Melting Temperature Materials
 - Strong Oxide Formers
- Intricate Parts
 - Reduce Need for Machining
 - More Sophisticated Parts than Casting
- Ceramic Metal Mixtures

Tm (C)
660
1083
1536
3410
3000
2610
1453
2050
1400
2200
1900

Surface Energy

- Atoms on Surface of Particle
 - Have Higher Energy
 - Are More Reactive
 - $\circ \qquad {\rm Are \ Under Bonded}$
- Surface Energy (y)
 - Energy Per Unit Area
 - Not Energy of the Surface

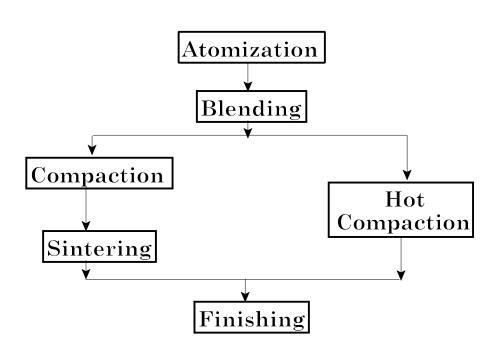
Higher Total Energy

Lower Total Energy

BASIC CLASS NOTES

OCTOBER 21, 2015

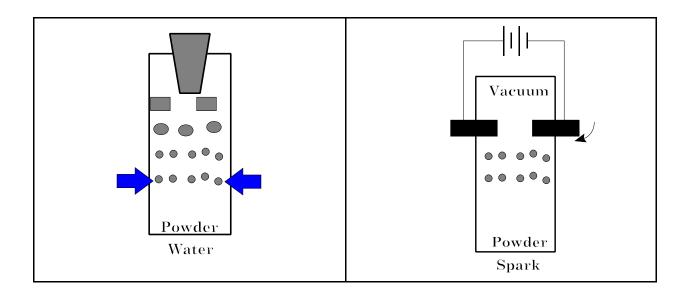
Concept Question


- What Has to Be Done to Make a Part Using Powder Processing?oStart With Chunk of Material •

0 Finish With Part

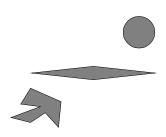
Think of All Steps (Conceptually) 0

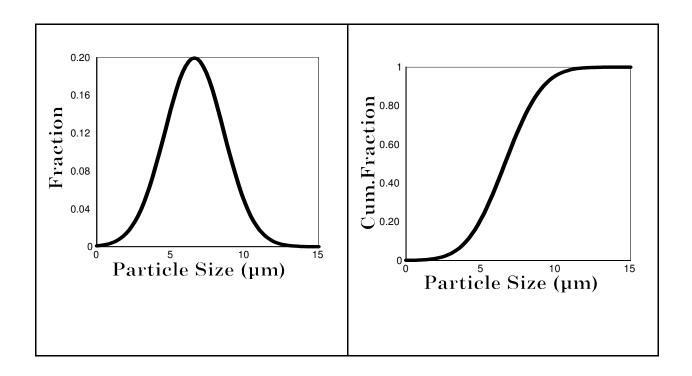
BASIC CLASS NOTES


<u>General Process</u>

BASIC CLASS NOTES

Making Powder


- Atomization
 - Water or Gas



BASIC CLASS NOTES

Powder

- Powder Can Have Many Forms
 - Ideally Spherical
 - Needle Like
 - Flake Like
- Powder Size Distribution

BASIC CLASS NOTES

OCTOBER 21, 2015

Blending

٠

- The Powder Must Be Mixed
 - Different Particle Sizes
 - Different Materials
- Add Lubricant / Flux
 - Removes Air
 - Can Prevent Oxide Formation on Metals

- Add Binder
 - Need to Be Able to Shape Part

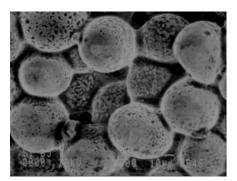
BASIC CLASS NOTES

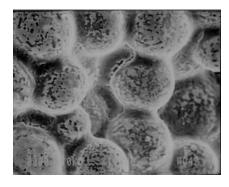
OCTOBER 21, 2015

Compaction - Green State

•

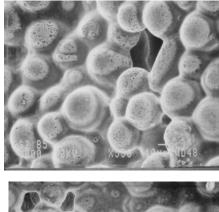
- The Powder Needs to Be Put in Die
 - Initial Shape Formation
 - Compaction Method Depends on Complexity of Part
 - Rolling
 - Extrusion
 - Injection Molding
 - Isostatic Pressing

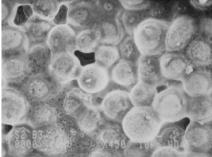

	Pressure
Material	(MPa)
Aluminum	70-275
Iron	350-800
Tungsten	70-140
Tantalum	70-140
Alumina	110-140


BASIC CLASS NOTES

OCTOBER 21, 2015

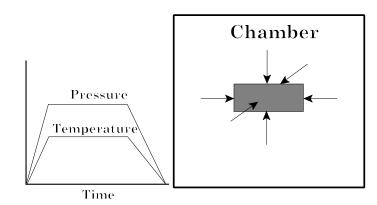
Sintering


- Green Compact is Heated
 - 70-85% of Melting Point
 - Sometimes Under Pressure
 - Particles Actually Join
 - Necking
 - Pore Elimination
 - Grain Growth



Sintering Continued

- The Pores Between Particles Are Eliminated
 - Can Be Enhanced With Liquid
 - Can Remain in Alloy
 - Can React



BASIC CLASS NOTES

OCTOBER 21, 2015

Hot Isostatic Pressing

- Combines Two Steps
 - 0 Compaction
 - 0 Sintering

<u>Sintering Temperatures</u> • Lower Than Melting Point

Material	T (C)	Tm (C)
Aluminum		660
Copper	760-900	1083
Iron	1000-1150	1536
Tungsten	2350	3410
Tantalum	2400	3000
Molybdenum	2050	2610
Nickel	1000-1150	1453

BASIC CLASS NOTES

OCTOBER 21, 2015

In-Class Exercise

•

Compare Sintering to Casting

Compare Sintering to Casting	D100
<u>Similarities</u>	Differences
Advantages	<u>Disadvantages</u>
Advantages	Disadvantages
<u>Advantages</u>	<u>Disadvantages</u>
Advantages	<u>Disadvantages</u>
<u>Advantages</u>	<u>Disadvantages</u>
Advantages	Disadvantages

BASIC CLASS NOTES

OCTOBER 21, 2015

Summary

- Means to Fabriacte Parts Without •
 - Melting
 - 0 Requires Several Steps
 - **Intricate Parts** 0

Parts Made Through Powder Processing

- **Turbine Blades**
 - Jet Engines
- Gears
- Valve Inserts •
- Medical Implants
- Electronic Components
 - Diodes, Heat Sinks
 - Tool Dies