POLYMER PROCESSES

BASIC CLASS NOTES

<u>Reading Review and Class Preparation</u> This should be filled out prior to class.

Key Concepts to Be Discussed in Class:

Questions About Subject Matter for Class Session:

So What? Why? Who Cares?

- Polymers are Being Considered as Alternatives to Metals
- More Polymers than Metals
 - Wider Variety of Properties
- Have Enabled

0

- Medical Advances
- Economic and Environmental Advances
- Clothing and Apparel
- Most Composites are Based on Polymers
 - Fiber Glass Reinforced Plastic

POLYMER PROCESSES

BASIC CLASS NOTES

Outline

- Polymers
 - As a Material
 - Properties (Mechanical, Physical)
 - Types of Polymers
- Processing Polymers • Casting
 - Extrusion
 - Injection Molding
 - Blow Molding
 - Thermoforming
 - Joining

POLYMER PROCESSES

BASIC CLASS NOTES

Polymers

- Long-Chain Molecules Based on Carbon
 - 0 Molecular Weight $\ge 10^4$ or 10^5 g/mol
 - 0 Formed by Perpetuating Reaction

Strength of Polymers

- Behavior Under Applied Load
- Chains Disentangle

POLYMER PROCESSES

BASIC CLASS NOTES

Types of Polymers

- Thermoplastic polymers that will melt and flow (can be re-shaped)
 - Low Density Polyethylene (LDPE)
 - High Density Polyethylene (HDPE)
 - Polystyrene (glassy at room temperature)
 - Poly(vinyl chloride)
 - Acrylonitrile-Butadiene-Styrene (ABS)
- Thermoset polymers that cannot melt or flow due to crosslinking.
 - Epoxies
 - Polyesters
 - Vulcanized Rubber

Materials Facts

- Two Types of Solids Exist
 - Crystalline
 - \circ Amorphous or Glasses
- Amorphous Materials
 - Are Not Supercooled Liquids
 - Solidify at Glass Transition Temperature Not Melting Temperature
- Polymers Are Either
 - Completely Amorphous
 - Partially Amorphous

POLYMER PROCESSES

BASIC CLASS NOTES

Stress - Strain of Thermoplastic

- Major Temperature Dependence
- **Glass Transition Temperature**
 - 0 Ductile / Brittle Transition

Ref. W. Riffe - Class Notes

Temperature Dependent Mec. Prop

- SC and Amorphous Strong and Brittle Below • T_g Big Difference Above T_g

POLYMER PROCESSES

BASIC CLASS NOTES

Thermosets

Crosslinking of Polybutadiene Polymer

POLYMER PROCESSES

BASIC CLASS NOTES

Team Problem

- How do the Properties of Polymers effect Manufacturing?
 - Consider Manufacturing Processes and Polymers
- How Could One Cast a Polymer?

- What About the Mechanical Forming Processes?
 - Extrusion
 - "Forging"
 - Rolling
 - Injection Molding

POLYMER PROCESSES

BASIC CLASS NOTES

Casting

.

- Definition
 - Pour Liquid Material (Metal) Into a Cavity of Prescribed Geometry and Let it Solidify
 - Thermoplastic
 - PrePolymer
 - Reactant
- Thermoset
 - 2 Part Epoxy

POLYMER PROCESSES

BASIC CLASS NOTES

Extrusion

- Definition
 - Push a Material Through a Die
 - Polymers -Usually Liquid
- Can Make
 - $\circ \qquad \text{Simple Shapes} \qquad$
 - Polymer Blends

Ref. W. Riffe - Class Notes

POLYMER PROCESSES

BASIC CLASS NOTES

Injection Molding

- Week 10 Practica
- Similar to Die Casting
 - Molten Material Pushed Into Die
- Can Be Combined With Extrusion

POLYMER PROCESSES

BASIC CLASS NOTES

Blow Molding

•

- Based on Glass Blowing
 - 0 Liquid Material
 - Expand With Air Cool to Shape 0
 - 0
- Can Make •
 - 0 Bottles
 - 0 Jars

Ref. W. Riffe - Class Notes

POLYMER PROCESSES

BASIC CLASS NOTES

Thermoforming

- Similar to "Forging"
 - Apply a Compressive Force
 - Shape Material
- Use Vacuum
 - Apply Large Force over Area

Ref. W. Riffe - Class Notes

POLYMER PROCESSES

BASIC CLASS NOTES

<u>Summary</u>

- Polymer Processing
 - Polymers as Materials
 - Take Advantage of Temperature Dependent Mechanical Properties
 - Processes Analagous to Metals
 - Specific Processes Discussed

<u>After Class Review</u> Summarize Key Concepts and List Further Questions Review Notes and Make Links to HW Problems

<u>Key Concepts</u>	Questions