BASIC CLASS NOTES

OCTOBER 9, 2015

Mechanical Properties Module

Outline

- Mechanical Testing ٠
 - 0 **Tensile Test and Mechanical Properties**
 - Hardness Test 0

Mechanical Properties

- Effect Both Design and Manufacturing ٠ •
 - Properties of Interest
 - 0 Strength
 - 0 Stiffness
 - Hardness 0
 - 0 **Creep Resistance**
 - Fatigue Resistance 0
 - 0 Fracture Toughness

Focus On •

- 0 Properties
- 0 Measurement

BASIC CLASS NOTES

OCTOBER 9, 2015

Tensile Test Equipment

• Apply a Load to a Material it Elongates

BASIC CLASS NOTES

OCTOBER 9, 2015

BASIC CLASS NOTES

Mechanical Properties

• Ductility, Max Strain, UTS

<u>Ultimate Tensile Strength</u>

Ductility

Max Strain

20

Strain (%)

30

40

10

Ó

BASIC CLASS NOTES

Elastic Modulus

- Energy is Recovered
- Hooke's Law
 - Force is Proportional to Elongation
 - Stress is Proportional to Strain

$$\frac{F}{A_0} = E \frac{\Delta L}{L_0}$$

$$\sigma = E \varepsilon$$

MPa)

Elastic Modulus

• Slope of $\sigma(\varepsilon)$ When Elastic

BASIC CLASS NOTES

OCTOBER 9, 2015

<u>Yield Stress</u>

- Definition
 - Stress Required for Plastic Deformation
- Practical Definition
 - Stress Required for Minimum Observed Plastic Deformation
- Elastic Recovery
 - On UnLoading

<u>Yield Strength</u>

• 0.2% Permanent Deformation

BASIC CLASS NOTES

OCTOBER 9, 2015

Force Required for Permanent Deformation

• Determine the Minimum Force Required to Cause a 2.5cm² Bar to Yield

BASIC CLASS NOTES

Force for Required Strain

• Determine the Force Required to Strain a 2.5cm² Bar to 15%

BASIC CLASS NOTES

OCTOBER 9, 2015

<u>Hardness</u>

- Defined as Resistance to Penetration
- Measured by
 - Penetrating Material
 - Measuring Resistance
- Empirical Scales
- Correlation With Strength

Various Hardness Tests

BASIC CLASS NOTES

OCTOBER 9, 2015

Relation Between Scales

- Rockwell
 - More Precise
 - C Harder Than B
 - A Overlaps
- Brinell
 - Broad

Hardness and Strength

- Correlations Exist
 - Specific to Alloy Systems
- Hardness Tests
 - Less Expensive than Tensile Tests
 - More Reproducible
- Hardness Often Used as Quality Control Measure

BASIC CLASS NOTES

OCTOBER 9, 2015

In-Class Question 1

Identify and Justify the Correct Answer and Explain why each Incorrect is Wrong.

Which statement best describes hardness testing?

A hard object of known geometry is pressed into the surface of a test specimen and based on the dimensions of the indentation the hardness is determined.

A hard object of known geometry is pressed into the surface of a test specimen and based on the energy (force x distance) to create the indentation the hardness is determined.

□ A hard object of known geometry is pressed into the surface of a test specimen and based on the energy (dent volume x specific energy) to create the indentation the hardness is determined. In this case the specific energy of a material is the energy per unit volume required to displace material.

□ A hard object of known geometry is allowed to scratch the surface of a material. Based on the dimensions of the scratch the hardness is determined.

BASIC CLASS NOTES

OCTOBER 9, 2015

In-Class Question 2

Identify and Justify the Correct Answer and Explain why each Incorrect is Wrong.

You are given 4 numbers from a tensile test. The person wrote the numbers down and forgot to write down the properties. These numbers are 15%, 23%, 120MPa, and 310MPa. Which statement represents the properties.

□ ductility = 15%, max strain= 23%, UTS = 120 MPa, and Yield Strength = 310 MPa

□ ductility = 23%, max strain= 15%, UTS = 120 MPa, and Yield Strength = 310 MPa

□ ductility = 15%, max strain= 23%, UTS = 310 MPa, and Yield Strength = 120 MPa

□ ductility = 23%, max strain= 15%, UTS = 310 MPa, and Yield Strength = 120 MPa

BASIC CLASS NOTES

In-Class Question 3

Determine the Following Properties of the Material based on the Tensile Test Curve Shown Above

- Ductility
- Maximum Strain
- Modulus
- Ultimate Tensile Strength
- Yield Strength

BASIC CLASS NOTES

In-Class Question 4

A bar of this material has a cross-sectional area of $1.3 \times 10^{-4} m^2$. Determine the force required to stretch a 30cm bar to a length of 36cm (under load).

Note: 1MPa=10⁶Pa and 1Pa=1N/m²