BASIC CLASS NOTES

<u>Reading Review and Class Preparation</u> This should be filled out prior to class.

Key Concepts to Be Discussed in Class:

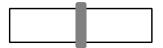
Questions About Subject Matter for Class Session:

So What? Why? Who Cares?

- Quite often Making Something Requires Joining the Pieces Together
- Techniques other Than Mechanical Fastening are Often Used

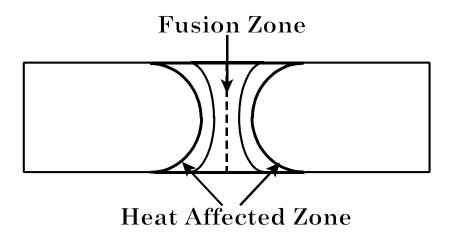
- A Problem Correctly Stated is a Problem Half Solved
 - Charles Kettering

BASIC CLASS NOTES


NOVEMBER 16, 2015

Definition of Welding

- Welding is a Fusion Joining Process
- In Metals
 - Both the Filler Metal and Base Metal Melt
- Weld Design Requires
 - Ensuring Melting
 - Ensuring Joining
 - Minimizing Effects


Before Welding

After Welding

Parts/Zones of a Welded Joint

- Fusion Zone
 - Metal Quickly Solidifies
- Heat Affected Zone
 - Solid Metal "Annealed" Due to Heat Transfer

BASIC CLASS NOTES

NOVEMBER 16, 2015

Concept Question

- Consider the Following Material Facts
 - Heating a Material Reduces Strength Both Before and After Cooling
 - Materials Which Solidify Quickly are Stronger
 - During Welding the Weld Pool Must Not Oxidize
- How Does This Effect Welding?

• What Must Be Done for a Good Weld?

• What is a Good Weld?

BASIC CLASS NOTES

NOVEMBER 16, 2015

Melting

• Sufficient Energy Must Be Provided to Melt the Required Amount of Metal

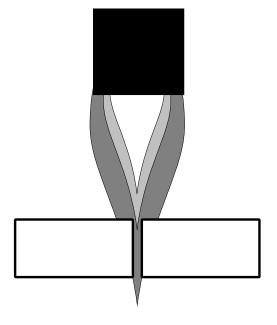
Freshmen Experience

- Two Pieces of Steel
- Flame Welded (No Filler Metal)
- Dimensions Length = 1.5" Width = 0.5" Thickness = 0.0625"

Heat and Power Sources

- Oxy-Acetylene
 - 48 kJ/L
 - Efficiency = 25%-50% or 50%-80%
- Shielded Metal Arc Welding
 - \circ 5x10⁶ 5x10⁸ W/m²
 - \circ Efficiency = 65%-85%

<u>Notice</u>


The time required to form the joint through flame welding is 10x that of arc welding

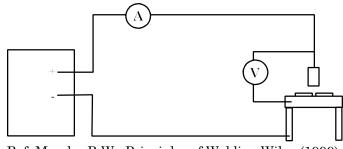
Ref: Messler R.W.: Principles of Welding; Wiley (1999)

BASIC CLASS NOTES

Oxy-Fuel Welding

- Heat Supplied by Combustion of Acetylene (C_2H_2) Control of Flame ۲
- - Oxidizing Neutral 0
 - 0
 - Reducing 0

NOVEMBER 16, 2015

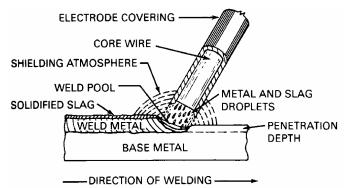

PENETRATION DEPTH

BASIC CLASS NOTES

ELECTRODE COVERING -Shielded Metal Arc Welding Power Source CORE WIRE . 0 Electric Arc (Lightning) SHIELDING ATMOSPHERE WELD POOL METAL AND SLAG SOLIDIFIED SLAG DROPLETS WELD METAL BASE METAL ----- DIRECTION OF WELDING ----Ref: D.Dickinson: Course Notes and NEMJet

Typical Set Up

- Huge Voltage
- Safety


Ref: Messler R.W.: Principles of Welding; Wiley (1999)

BASIC CLASS NOTES

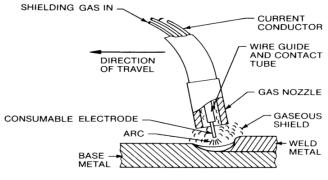
NOVEMBER 16, 2015

SMAW More Details

- A Flux Coats the Electrode
 - During Welding Heat is Generated
 - Flux Evaporates
 - Removes $O_2(g)$

Ref: D.Dickinson: Course Notes and NEMJet

SMAW Advantages


- Easily Implemented
- Inexpensive
- Flexible
- Compared to Flame Sources
 - Cost ?
 - Easier Protection of Weld Pool
 - Faster

BASIC CLASS NOTES

NOVEMBER 16, 2015

GMAW or MIG


- Power Source
 - Electric Arc
 - Like SMAW
- Protection
 - Inert Gas From Feed

Ref: D.Dickinson: Course Notes and NEMJet

<u>MIG Gun</u>

- Bulkier than SMAW Stick Holder
- Requires
 - Gas Souce
 - Metal Wire Feed
 - 0

Ref: D.Dickinson: Course Notes and NEMJet

BASIC CLASS NOTES

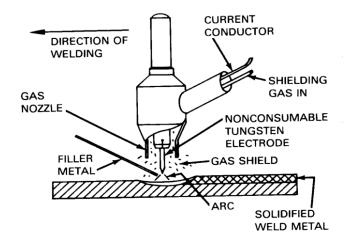
NOVEMBER 16, 2015

- Robots and Automation

 •
 MIG Welding is Automatabile

 •
 Wire Feed

 - 0 Gas Flow Rate
 - Position 0
- **Difficult Manual Operation** •


Ref: D.Dickinson: <u>Course Notes</u> and NEMJet

BASIC CLASS NOTES

NOVEMBER 16, 2015

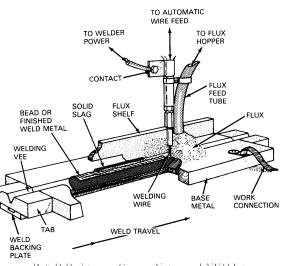
GTAW

- Heat Source
 - Arc From Tungsten (W) Electrode
- Protection
 - Inert Gas from Feed
 - Alloying
 - $\circ \qquad \ \ {\rm Filler} \ {\rm Rod} \ {\rm can} \ {\rm Be} \ {\rm Used}$

Ref: D.Dickinson: Course Notes and NEMJet

TIG Gun

- TIG Gun
 - Complicated
- Filler Metal
 - On the Side
- Requires
 - Gas Source
 - Wire Feed
 - Tip Maintenance

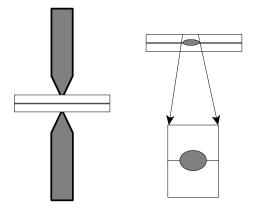

Ref: D.Dickinson: Course Notes and NEMJet

BASIC CLASS NOTES

NOVEMBER 16, 2015

Spot Welding

• The Arc is Submerged in Powder

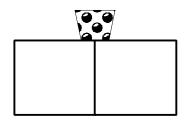

Ref: D.Dickinson: <u>Course Notes</u> and NEMJet

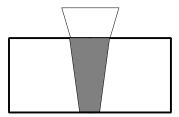
Spot Welding

.

- Electric Resistance Welding
 - Electrical Contact Under Pressure
 - Localized

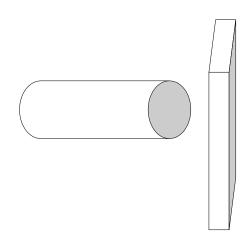
$$E = I^2 R t$$




BASIC CLASS NOTES

NOVEMBER 16, 2015

Thermit Welding


- Use of Chemical Reaction
 - $Al(s) + Fe_2O_3(s) -> Fe(l) + Al_2O_3(s)$

Friction Welding

- Use Friction to Generate Heat
 - High Speed Part
 - Causes Joint to Form

