BASIC CLASS NOTES

<u>Class Preparation and Reading Review</u> This should be completed prior to class

Key Concepts to Be Discussed in Class:

Questions About Subject Matter for Class Session:

<u>Outline</u>

- General Casting Principles
- Green Sand Casting

BASIC CLASS NOTES

OCTOBER 14, 2015

Casting in General

- Basic Definition
 - Pour Liquid Material (Metal) Into a Cavity of Prescribed Geometry and Let it Solidify

- Need to Consider
 - Melting of Metal (Energy, Purity)
 - Freezing of Metal (Heat Transfer, Thermal Ranges)
 - Shrinkage and Porosity
 - First Step in Many Manufacturing Processes
- Wide Variety of Shapes can be Produced

BASIC CLASS NOTES

OCTOBER 14, 2015

Melting

- First Step in Casting
- Requires Energy
- Example for 10kg of Aluminum • Heat Up Solid to T_M
 - \sim meat op sond to $T_{\rm M}$

$$\Delta H = VC_{PS} \left(T_M - T_0 \right)$$

$$\left(3.7 \times 10^{-3} m^3 \right) \left(3.0 \times 10^6 \frac{J}{m^3 C} \right) (660C - 25C)$$

$$7.0 \times 10^6 J$$

 $\begin{array}{l} \frac{Properties \ of}{Aluminum} \\ \overline{T_{M}} = 660^{\circ} C \\ \Delta H_{F} = 9.5 x 10^{8} \ J/m^{3} \\ C_{PS} = 3.0 x 10^{6} \ J/m^{3} K \\ C_{PL} = 2.6 x 10^{6} \ J/m^{3} K \end{array}$

 $\circ \qquad {\rm Melt \ the \ Solid}$

$$\Delta H = V \Delta H_F$$

$$\left(3.7 \times 10^{-3} \, m^3\right) \left(9.5 \times 10^8 \, \frac{J}{m^3}\right)$$

$$3.5 \times 10^6 \, J$$

$$\Delta H = VC_{PS} \left(T_M - T_0 \right)$$

$$\left(3.7 \times 10^{-3} m^3 \right) \left(2.6 \times 10^6 \frac{J}{m^3 C} \right) (100C)$$

$$0.96 \times 10^6 J$$

BASIC CLASS NOTES

OCTOBER 14, 2015

Solidification

- Requires the Following
 - Heat Transfer to Mold
 - Time
- Early Solidification
 - Can Cause Defects

$$t_s = C \left(\frac{V}{A}\right)^2$$

A Sphere Will take 22% Longer to Solidify than A Cube

Shrinkage

- Solid Metals are More Dense Than Liquid Metals
 - Solid Aluminum $\rho = 2.7$ g/cc
 - Liquid Aluminum $\rho = 2.4$ g/cc

Metal	Shrinkage
Al	6.6%
Copper	4.9%
Brass	4.5%
Steel	3.0%
Mg	4.2%

BASIC CLASS NOTES

OCTOBER 14, 2015

Solidification of Alloys

- Most Alloys Solidify Over A Range of Temperatures
 - Can Cause Compositional Variation
 - Can Cause Hot Tearing

BASIC CLASS NOTES

OCTOBER 14, 2015

Green Sand Casting

- Use Green Sand As a Mold
 - Heat Transfer Through Green Sand
- Place Pattern In Sand
 - Requires PreMade Pattern
 - Well Packed Sand to Hold Cavity
- Requires Two Halves
 - The Mold Cavity Will Be in the Center
- Assembled Casting Mold

BASIC CLASS NOTES

OCTOBER 14, 2015

Procedure for Making Mold (1/3)

- Make Drag First
 - Place Pattern in Drag
 - Add Gates and Runners

Procedure for Making Mold (2/3)

- Make the Cope Second
 - Place Pattern in Cope
 - Add Sprue and Risers

BASIC CLASS NOTES

OCTOBER 14, 2015

Procedure for Making Mold (3/3)

- Assemble Drag and Cope
- Pour Metal
- Variations
 - Insert Sprue and Runner on Complete Assembly

BASIC CLASS NOTES

OCTOBER 14, 2015

Advantages of Green Sand Casting

- Inexpensive
 - Mold Material Cheap and Recylable
 - Make One and Only One Pattern
- Versatile
 - Can Make Variety of Shapes
 - Can Make Automate
 - Can Make a Variety of Materials

Concerns With Green Sand Casting

- Mold Cavity Surrounded by Sand
 - Precision Problems
 - Transfer Problems
 - Need to Make 2 Parts
 - Cope
 - Drag
- Time to Cool
 - Time in Production
 - Still Parts

BASIC CLASS NOTES

OCTOBER 14, 2015

Summary

- Casting is Conceptually One of the Easiest Processes to Visualize and Implement
- Casting Processes Comparison
 - Similarities
 - Differences
- Acknowledgment
 - W.R. Riffe (For Use of Casting Images)

<u>After Class Review</u> Summarize Key Concepts and List Further Questions

<u>Key Concepts</u>	Questions